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ABSTRACT
This chapter develops a framework for quantile regression in binary longitu-
dinal data settings. A novel Markov chain Monte Carlo (MCMC) method is
designed to fit the model and its computational efficiency is demonstrated in
a simulation study. The proposed approach is flexible in that it can account
for common and individual-specific parameters, as well as multivariate het-
erogeneity associated with several covariates. The methodology is applied to
study female labor force participation and home ownership in the United
States. The results offer new insights at the various quantiles, which are of
interest to policymakers and researchers alike.

Keywords: Bayesian inference; binary outcomes; female labor force
participation; home ownership; limited dependent variables; panel data

1. INTRODUCTION
The proliferation of panel data studies is well-documented and much of it has
been attributed to data availability and challenging methodology (Hsiao, 2007).
While panel data have been attractive for understanding behavior and dynamics,
the modeling complexities involved have moved attention away from the data’s
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unique capacities. Modeling features such as a binary outcome variable or a
quantile analysis, which are relatively straightforward to implement with
cross-sectional data, are challenging and computationally burdensome for panel
data. However, these features are important as they allow for the modeling of
probabilities and lead to a richer view of how the covariates influence the out-
come variable. Motivated by these difficulties, this chapter adds to the methodo-
logical advancements for panel data by developing quantile regression methods
for binary longitudinal data and designing a computationally efficient estimation
algorithm. The approach is applied to two empirical studies, female labor force
participation and home ownership.

The chapter touches on three growing econometric literatures � discrete
panel data, quantile regression for panel data, and quantile regression for dis-
crete data. In reference to the latter, quantile regression has been implemented
in binary data models (Benoit & Poel, 2012; Kordas, 2006), ordered data models
(Alhamzawi & Ali, 2018; Rahman, 2016), count data models (Machado &
Silva, 2005), and censored data models (Harding & Lamarche, 2012; Portnoy,
2003). For limited dependent variables, the concern is modeling the latent utility
differential in the quantile framework, since the response variable takes limited
values and does not yield continuous quantiles. Our chapter follows the work in
this literature by using the latent utility setting and interpreting the utility as a
“propensity” or “willingness” that underlie the latent scale, thus increasing our
understanding of the impact of the covariates on the binary outcomes.

The literature on quantile regression in panel data settings includes (but is
not limited to) Koenker (2004), Geraci and Bottai (2007), Y. Liu and Bottai
(2009), Galvao (2010), Galvao and Kato (2016), Lamarche (2010), Harding and
Lamarche (2009), and Harding and Lamarche (2017). The latter of these papers
discusses the issues associated with solely focusing on fixed effects estimators
and highlights the usefulness of allowing for a flexible specification of individual
heterogeneity associated with covariates, also of interest in the present chapter.
In a recent Bayesian paper, Luo, Lian, and Tian (2012) develop a hierarchical
model to estimate the parameters of conditional quantile functions with random
effects. The authors do so by adopting an asymmetric Laplace (AL) distribution
for the residual errors and suitable prior distributions for the parameters.
However, directly using the AL distribution does not yield tractable conditional
densities for all of the parameters and hence a combination of
Metropolis�Hastings (MH) and Gibbs sampling is required for model estima-
tion. The use of the MH algorithm may require tuning at each quantile. To
overcome this limitation, Luo et al. (2012) also present a full Gibbs sampling
algorithm that utilizes the normal-exponential mixture representation of the AL
distribution. This mixture representation is also followed in our work, with
important computational improvements.

Finally, for discrete panel data, recent work by Bartolucci and Nigro (2010)
introduces a quadratic exponential model for binary panel data and utilizes a con-
ditional likelihood approach, which is computationally simpler than previous clas-
sical estimators. Bayesian approaches to binary panel data models include work
by Albert and Chib (1996), Chib and Carlin (1999), Chib and Jeliazkov (2006),
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and Burda and Harding (2013). These work influence the estimation methods
designed in our quantile approach to binary panel data.

This chapter contributes to the three literatures by extending the various
methodologies to a hierarchical Bayesian quantile regression model for binary
longitudinal data (QBLD) and proposing a Markov chain Monte Carlo
(MCMC) algorithm to estimate the model. The model handles both common
(fixed) and individual-specific (random) parameters (commonly referred to as
mixed effects in statistics). The algorithm implements a blocking procedure
that is computationally efficient and the distributions involved allow for
straightforward calculations of covariate effects. The framework is implemen-
ted in two empirical applications. The first application examines female labor
force participation, which has been heavily studied in panel form. The topic
became of particular interest in the state dependence versus heterogeneity
debate (Heckman, 1981a). We revisit this question and implement our panel
quantile approach, which has been otherwise unexplored for this topic. The
results offer new insights regarding the determinants of female labor force par-
ticipation and how the ages of children have different effects across the quan-
tiles and utility scale. The findings suggest that policy should be focused on
women’s transitions into the labor force after child birth and the few years
after.

The second application considers the probability of home ownership dur-
ing the Great Recession. Microlevel empirical analyses on individuals moving
into and out of housing markets are lacking in the recent literature. Past stud-
ies include Carliner (1974) and Poirier (1977), but the recent housing crisis
offers a new opportunity to reevaluate the topic. Furthermore, a full quantile
analysis of home ownership is yet to be explored. Since home ownership is a
choice that requires years of planning, individual characteristics may range
drastically across the latent utility scale. The analysis presented in this chap-
ter controls for multivariate heterogeneity in individuals and wealth, and
investigates the determinants of home ownership, state dependence in home
ownership, and how the shock to housing markets affected these items. The
results provide an understanding as to how individuals of particular demo-
graphics and socioeconomic status fared during the collapse of the housing
market.

The rest of the chapter is organized as follows. Section 2 reviews quantile
regression and the AL distribution, Section 3 introduces the QBLD model,
presents a simulation study, and discusses methods for covariate effects.
Section 4 considers the two applications and concluding remarks are offered
in Section 5.

2. QUANTILE REGRESSION AND THE ASYMMETRIC
LAPLACE DISTRIBUTION

The p-th quantile of a random variable Y is the value y0 such that the probabil-
ity that Y will be less than y0 equals p∈ ð0; 1Þ. Mathematically, if Qð⋅Þ denotes
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the inverse of the cumulative distribution function (cdf) of Y , the p-th quantile is
defined as:

QY ðpÞ≡F�1
Y ðpÞ ¼ inffy0 : F ðy0Þ≥ pg:

Quantile regression implements the idea of quantiles within the regression
framework with Qð⋅Þ modified to denote the inverse cdf of the dependent variable
given the covariates. The objective is to estimate conditional quantile functions and
to this purpose, regression quantiles are estimated by minimizing the quantile
objective function which is a sum of asymmetrically weighted absolute residuals.

To formally explain the quantile regression problem, consider the following
linear model,

yi ¼ x0iβp þ εi; with Qεi ðp|xiÞ ¼ 0; ð1Þ

where yi is a scalar response variable, xi is a k × 1 vector of covariates, βp is a
k × 1 vector of unknown parameters that depend on quantile p, and εi is the
error term such that its p-th quantile equals zero. Henceforth, we will drop the
subscript p for notational simplicity. In classical econometrics, the error ε does
not (or is not assumed to) follow any distribution and estimation requires mini-
mizing the following objective function,

min
β∈Rk

X
i:yi < x0iβ

ð1� pÞ yi � x0iβ
�� ��þ X

i:yi ≥x0iβ

p yi � x0iβ
�� ��

2
4

3
5: ð2Þ

The minimizer β̂ gives the p-th regression quantile and the estimated conditional

quantile function is obtained as ŷi ¼ x0iβ̂. Alternatively, the objective function in
Eq. (2) can be written as a sum of piecewise linear or check functions as follows:

min
β∈Rk

Xn
i¼1

ρpðyi � x0iβÞ;

where ρpðuÞ ¼ u ⋅ ðp� I ðu< 0ÞÞ and I ð⋅Þ is an indicator function, which equals
one if the condition inside the parenthesis is true and zero otherwise. The check
function, as seen in Fig. 1, is not differentiable at the origin. Hence, classical
econometrics relies on computational techniques to estimate quantile regression
models. Such computational methods include the simplex algorithm
(Barrodale & Roberts, 1973; Dantzig, 1963; Dantzig & Thapa, 1997, 2003;
Koenker & d’Orey, 1987), the interior point algorithm (Karmarkar, 1984;
Mehrotra, 1992; Portnoy & Koenker, 1997), the smoothing algorithm (C. Chen,
2007; Madsen & Nielsen, 1993), and metaheuristic algorithms (Rahman, 2013).

In contrast to classical quantile regression, Bayesian quantile regression
assumes that the error follows an AL distribution because the AL probability
density function (pdf) contains the quantile loss function (Eq. 2) in its exponent.

160 MOHAMMAD ARSHAD RAHMAN AND ANGELA VOSSMEYER



This facilitates the construction of a working likelihood, required for Bayesian
analysis. Maximizing an AL likelihood is equivalent to minimizing the quantile
objective function (Koenker & Machado, 1999; Yu & Moyeed, 2001). A ran-
dom variable Y follows an AL distribution if its pdf is given by:

f ðy|μ; σ; pÞ ¼ pð1� pÞ
σ

exp �ρp
y� μ

σ

� �h i
; ð3Þ

where ρpð⋅Þ is the check function as defined earlier, �∞< μ<∞ is the location
parameter, σ > 0 is the scale parameter, and 0 < p < 1 is the skewness parameter
(Kotz, Kozubowski, & Podgorski, 2001; Yu & Zhang, 2005). The mean and var-
iance of Y from the pdf given by Eq. (3) are:

EðY Þ ¼ μþ σð1� 2pÞ
pð1� pÞ and V ðY Þ ¼ σ2ð1� 2pþ 2p2Þ

p2ð1� pÞ2 :

If μ ¼ 0 and σ ¼ 1, then both mean and variance depend only on p and hence
are fixed for a given value of p.

The Bayesian approach to quantile regression for binary data assumes that
ε∼ALð0; 1; pÞ. Here, the variance is constant to serve as a normalization for
identification, typical in probit and logit models (Jeliazkov & Rahman, 2012;
Koop & Poirier, 1993; Poirier & Ruud, 1988). However, working directly with
the AL distribution is not conducive to constructing a Gibbs sampler and hence
the normal-exponential mixture of the AL distribution is often employed
(Kozumi & Kobayashi, 2011). Several recent papers have utilized the mixture
representation, including Ji, Lin, and Zhang (2012) for Bayesian model selection
in binary and Tobit quantile regression, Luo et al. (2012) for estimating linear
longitudinal data models, and Rahman (2016) for estimating ordinal quantile
regression models. We also exploit the normal-exponential mixture representa-
tion of the AL distribution to derive the estimation algorithm for quantile
regression in binary longitudinal data settings.

pp  1

ρ
p
(u)

Fig. 1. Quantile Regression Check Function.
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3. THE QUANTILE REGRESSION MODEL FOR BINARY
LONGITUDINAL DATA

This section presents the QBLD model and an estimation algorithm to fit the
model. The performance of the proposed algorithm is illustrated in a simulation
study. The last part of this section considers methods for model comparison and
covariate effects.

3.1. The Model

The proposed model looks at quantiles of binary longitudinal data expressed as
a function of covariates with common effects and individual-specific effects. The
individual-specific effects offer additional flexibility in that both intercept and
slope heterogeneity can be captured, which are important to avoid biases in the
parameter estimates. The QBLD model can be conveniently expressed in the
latent variable formulation (Albert & Chib, 1993) as follows:

zit ¼ x0itβ þ s0itαi þ εit; ∀ i ¼ 1;…; n; t ¼ 1;…;Ti;

yit ¼
1 if zit > 0;

0 otherwise;

(
ð4Þ

where the latent variable zit denotes the value of z at the t-th time period for the
i-th individual, x0it is a 1× k vector of explanatory variables, β is k × 1 vector of
common parameters, s0it is a 1× l vector of covariates that have individual-
specific effects, αi is an l × 1 vector of individual-specific parameters, and εit is
the error term assumed to be independently and identically distributed (i.i.d.) as
ALð0; 1; pÞ with Qεit ðp|xit; αiÞ ¼ 0. This implies that the conditional density of
zit αi is an ALðx0itβ þ s0itαi; 1; pÞ for i ¼ 1; :::; n;
�� and t ¼ 1; :::;Ti; with Qzit ðp xit;j

αiÞ ¼ x0itβ þ s0itαi: Note that sit may contain a constant for intercept heterogene-
ity, as well as other covariates (which are often a subset of those in xit) to
account for slope heterogeneity of those variables. The variable zit is unobserved
and represents the latent utility associated with the observed binary choice yit.
The latent variable formulation serves as a convenient tool in the estimation
process. Furthermore, latent utility underlies the interpretation of the results at
the various quantiles.

While working directly with the AL density is an option, the resulting poste-
rior will not yield the full set of tractable conditional distributions necessary for
a Gibbs sampler. Thus, we utilize the normal-exponential mixture representation
of the AL distribution, presented in Kozumi and Kobayashi (2011), and express
the error as follows:

εit ¼ θwit þ τ
ffiffiffiffiffiffi
wit

p
uit; ∀ i ¼ 1;…; n; t ¼ 1;…;Ti; ð5Þ

where uit ∼Nð0; 1Þ is mutually independent of wit ∼ Eð1Þ with E representing an
exponential distribution and the constants θ ¼ 1�2p

pð1�pÞ and τ ¼
ffiffiffiffiffiffiffiffiffiffi

2
pð1�pÞ

q
. The
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mixture representation gives access to the appealing properties of the normal
distribution.

Longitudinal data models often involve a moderately large amount of data,
so it is important to take advantage of any opportunity to reduce the computa-
tional burden. One such trick is to stack the model for each individual i
(Hendricks, Koenker, & Poirier, 1979). We define zi ¼ ðzi1;…; ziTi Þ0,
Xi ¼ ðx0i1;…; x0iTi

Þ0, Si ¼ ðs0i1;…; s0iTi
Þ0, wi ¼ ðwi1;…;wiTi Þ0, Dτ

ffiffiffiffi
wi

p ¼
diag τ

ffiffiffiffiffiffiffi
wi1

p
;…; τ

ffiffiffiffiffiffiffiffi
wiTi

p� �
, and ui ¼ ðui1;…; uiTi Þ0. Building on Eqs. (4) and (5), the

resulting hierarchical model can be written as,

zi ¼ Xiβ þ Siαi þ θwi þDτ
ffiffiffiffi
wi

p ui;

yit ¼
1 if zit > 0;

0 otherwise;

(

αi |φ2 ∼Nlð0;φ2IlÞ; wit ∼ Eð1Þ; uit ∼Nð0; 1Þ;
β∼Nkðβ0;B0Þ; φ2 ∼ IGðc1=2; d1=2Þ;

ð6Þ

where we assume that αi are identically distributed as a normal distribution.
The last row represents the prior distributions with N and IG denoting
the normal and inverse-gamma distributions, respectively. Here, we note that
the form of the prior distribution on β holds a penalty interpretation on the
quantile loss function (Koenker, 2004). A normal prior on β implies a ℓ2 pen-
alty and has been used in Yuan and Yin (2010), and Luo et al. (2012). One
may also employ a Laplace prior distribution on β that imposes ℓ1 penaliza-
tion, as used in Alhamzawi and Ali (2018). While Alhamzawi and Ali (2018)
also work with quantile regression for discrete panel data (ordered, in particu-
lar), our work contributes by considering multivariate heterogeneity (not just
intercept heterogeneity), and introducing computational improvements out-
lined below.

By Bayes’ theorem, we express the “complete joint posterior” density as pro-
portional to the product of likelihood function and the prior distributions as
follows:

πðβ;α;w;z;φ2|yÞ ∝ ∏
n

i¼1
f ðyi |zi;β;αi;wi;φ

2Þπðzi |β;αi;wiÞπðwiÞπðαi |φ2Þ
� 	

πðβÞπðφ2Þ;

∝ ∏
n

i¼1
∏
Ti

t¼1
f ðyit|zitÞ


 �
πðzi |β;αi;wiÞπðwiÞπðαi |φ2Þ

� 	
πðβÞπðφ2Þ;

ð7Þ

where the first line uses independence between prior distributions and second
line follows from the fact that given zit, the observed yit is independent of all
parameters because the second line of Eq. (6) determines yit given zit with
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probability one. Substituting the distribution of the variables associated with the
likelihood and the prior distributions in Eq. (7) yields the following expression:

πðβ;α;w;z;φ2|yÞ∝ ∏
n

i¼1
∏
Ti

t¼1
½I ðzit>0ÞI ðyit ¼ 1Þþ Iðzit≤0ÞIðyit ¼ 0Þ�

� 	
∏
n

i¼1
D2

T
ffiffiffiffi
wi

p
��� ����

1
2

8<
:

9=
;

×exp �1
2

Xn
i¼1

fðzi�Xiβ�Siαi�θwiÞ0D�2
τ
ffiffiffiffi
wi

p ðzi�Xiβ�Siαi�θwiÞg
2
4

3
5

×exp �
Xn
i¼1

XTi

t¼1

wit

 !
ð2πφ2Þ

�nl
2
exp � 1

2φ2

Xn
i¼1

α0iαi

2
4

3
5

×ð2πÞ
�k
2
|B0|

�1
2
exp �1

2
ðβ�β0Þ0B�1

0 ðβ�β0Þ
2
4

3
5×ðφ2Þ

�
� c1
2 þ1

�
exp � d1

2φ2

2
4

3
5:

ð8Þ

The joint posterior density in Eq. (8) does not have a tractable form, and thus
simulation techniques are necessary for estimation. Bayesian methods are increas-
ing in popularity (Poirier, 2006), and this chapter takes the approach for a couple
of reasons. First, with discrete panel data, working with the likelihood function is
complicated because it is analytically intractable. The inclusion of individual-
specific effects makes matters worse. Second, while numerical simulation methods
are available for discrete panel data, they are often slow and difficult to implement
(Burda & Harding, 2013). The availability of a full set of conditional distributions
(which are outlined below) makes Gibbs sampling an attractive option that will
be simple to implement, both conceptually and computationally.

We can derive the conditional posteriors of the parameters and latent vari-
ables by a straightforward extension of the estimation technique for the linear
mixed-effects model presented in Luo et al. (2012). This is presented as
Algorithm 2 in Appendix 1, which shows the conditional posterior distributions
for the parameters and latent variables necessary for a Gibbs sampler. While
this Gibbs sampler is straightforward, there is potential for poor mixing proper-
ties due to correlation between ðβ; αiÞ and ðzi; αiÞ. The correlation often arises
because the variables corresponding to the parameters in αi are often a subset of
those in xit. Thus, by conditioning these items on one another, the mixing of the
Markov chain will be slow.

To avoid this issue, we develop an alternative algorithm which jointly sam-
ples ðβ; ziÞ in one block within the Gibbs sampler. This blocked approach signifi-
cantly improves the mixing properties of the Markov chain. The success of these
blocking techniques can be found in J. S. Liu (1994), Chib and Carlin (1999),
and Chib and Jeliazkov (2006). The details of our blocked sampler are described
in Algorithm 1.1 In particular, β is sampled marginally of αi from a multivariate
normal distribution. The latent variable zi is sampled marginally of αi from a
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truncated multivariate normal distribution denoted by TMVNBi , where Bi is
the truncation region given by Bi ¼ ðBi1 ×Bi2 ×…×BiTi Þ such that Bit is the
interval ð0; ∞Þ if yit ¼ 1 and the interval ð�∞; 0� if yit ¼ 0. To draw from a
truncated multivariate normal distribution, we utilize the method proposed in
Geweke (1991). This involves drawing from a series of conditional posteriors
which are univariate truncated normal distributions. Previous work using this
approach include Chib and Greenberg (1998) and Chib and Carlin (1999).
The random effects parameter αi is sampled conditionally on β; zi from another
multivariate normal distribution. The variance parameter φ2 is sampled from an
IG distribution and finally the latent weight w is sampled element-wise from a
generalized inverse Gaussian (GIG) distribution (Dagpunar, 1988, 1989;
Devroye, 2014).

Algorithm 1. (Blocked Sampling)

• Sample ðβ; ziÞ in one block. The objects ðβ; ziÞ are sampled in the following
two sub-steps.

(1) Let Ωi ¼ φ2SiS0
i þD2

τ
ffiffiffiffi
wi

p
� �

. Sample β marginally of α from

β|z;w;φ2 ∼Nð~β; ~BÞ, where,

~B
�1 ¼

Xn
i¼1

X 0
iΩ

�1
i Xi þ B�1

0

 !
and ~β ¼ ~B

Xn
i¼1

X 0
iΩ

�1
i ðzi � θwiÞ þ B�1

0 β0

 !
:

(2) Sample the vector zi |yi; β;wi;φ2 ∼TMVNBi ðXiβ þ θwi;ΩiÞ for all
i ¼ 1;…; n, where Bi ¼ ðBi1 ×Bi2 ×⋯×BiTi Þ and Bit are the interval
ð0; ∞Þ if yit ¼ 1 and the interval ð�∞; 0� if yit ¼ 0. This is done by
sampling zi at the j-th pass of the MCMC iteration using a series of
conditional posterior distribution as follows:

zjit|z
j
i1;…; zjiðt�1Þ; z

j
iðtþ1Þ;…; zjiTi

∼TNBit ðμt|�t;Σt|�tÞ; for t ¼ 1;…;Ti;

where TN denotes a truncated normal distribution. The terms μt|�t and
Σt|�t are the conditional mean and variance, respectively, and are defined
as,

μt|�t ¼ x0itβ þ θwit þ Σt;�tΣ�1
�t;�tðzji;�t þ ðXiβ þ θwiÞ�tÞ;

Σt|�t ¼ Σt;t � Σt;�tΣ�1
�t;�tΣ�t;t;

where zji;�t ¼ ðzji1;…; zjiðt�1Þ; z
j�1
iðtþ1Þ;…; zj�1

iTi
Þ, ðXiβ þ θwiÞ�t is a column vec-

tor with t-th element removed, Σt;t denotes the ðt; tÞ-th element of Ωi, Σt;�t

denotes the t-th row of Ωi with element in the t-th column removed, and
Σ�t;�t is the Ωi matrix with t-th row and t-th column removed.
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• Sample αi |z; β;w;φ2 ∼Nð~a; ~AÞ for i ¼ 1;…; n, where,

~A
�1 ¼ S0

i D
�2
τ
ffiffiffiffi
wi

p Si þ
1
φ2

Il

� 

and ~a¼ ~A S0

iD
�2
τ
ffiffiffiffi
wi

p ðzi �Xiβ� θwiÞ
� �

:

• Sample wit|zit; β; αi ∼GIG ð0:5; ~λit; ~ηÞ for i ¼ 1;…; n and t ¼ 1;…;Ti, where,

~λit ¼ zit � x0itβ � s0itαi
τ

� 
2

and ~η ¼ θ2

τ2
þ 2

� 

:

• Sample φ2 | α∼IGð~c1=2; ~d1=2Þ, where ~c1 ¼ nl þ c1ð Þ and ~d1 ¼
Pn
i¼1

α0iαi þ d1

� 

:

We end this section with a cautionary note on sampling from a truncated
multivariate normal distribution, with the hope that it will be useful to
researchers on quantile regression. In our algorithm above, we sample zi from
TMVNBi ðXiβ þ θwi;ΩiÞ using a series of conditional posteriors which are uni-
variate truncated normal distributions. This method is distinctly different and
should not be confused with sampling from a recursively characterized trunca-
tion region typically related to the Geweke�Hajivassiliou�Keane (GHK)
estimator (Börsch-Supan & Hajivassiliou, 1993; Geweke, 1991;
Hajivassiliou & McFadden, 1998; Keane, 1994).2 The difference between the
two samplers have been exhibited in Breslaw (1994) and carefully discussed in
Jeliazkov and Lee (2010).

3.2. Simulation Study

This subsection evaluates the performance of the algorithm in a simulation
study, where the data are generated from a model that has common effects and
individual-specific effects in both the intercept and slopes. We estimate the quan-
tile regression model for binary longitudinal data (QBLD) using our proposed
blocked sampler (Algorithm 1) and the non-blocked sampler (Algorithm 2).

The data are simulated from the model zit ¼ x0itβ þ s0itαi þ εit where
t ¼ 1;…; 10 and i ¼ 1;…; 500. For the parameters and covariates: β ¼ ð�5; 6; 4Þ0,
αi ∼Nð02; I2Þ, x0it ¼ ð1; x2it; x3itÞ with x2it ∼Uð0; 1Þ and x3it ∼Uð0; 1Þ, s0it ¼ ð1; s2itÞ
with s2it ∼Uð0; 1Þ. The error is generated from a standard AL distribution,
εit ∼ALð0; 1; pÞ for p ¼ 0:25; 0:5; 0:75. Here, the notation Uð0; 1Þ denotes a stan-
dard uniform distribution. The binary response variable yit is constructed by
assigning one to all positive values of zit and zero to all negative values of zit.
Since the values generated from an AL distribution are different at each quantile,
the number of zeros and ones are also different at each quantile. In the simula-
tion, the number of observations corresponding to zeros and ones for the 25th,
50th, and 75th quantiles are ð1566; 3444Þ, ð2588; 2412Þ, and ð3536; 1464Þ,
respectively.
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The posterior estimates of the model parameters are based on the generated
data and the following independent prior distributions: β∼Nð0k; 10IkÞ and
φ2 ∼ IGð10=2; 9=2Þ. Table 1 reports the posterior means, standard deviations,
and inefficiency factors calculated from 12,000 MCMC iterations after a burn-in
of 3,000 iterations. The inefficiency factors are calculated using the batch-means
method discussed in Greenberg (2012). The simulation exercise was repeated for
various covariates, sample sizes, and common and individual-specific para-
meters, and the results do not change from this baseline case; hence they are not
presented.

The posterior means of the regression coefficients in both of the samplers
(blocked and non-blocked methods) are near the true values, β ¼ ð�5; 6; 4Þ0.
Additionally, the standard deviations are small. Across each quantile, the num-
ber of zeros and ones varies, and the samplers perform well in each case.
Furthermore, starting the algorithm at different values appears inconsequential,
which is a benefit of the full Gibbs sampler.

Turning attention to the differences between the two algorithms, it is clear
that the inefficiency factors from the blocked algorithm are much lower, suggest-
ing better sampling performance and a nice mixing of the Markov chain. The
advantages of the blocking procedure are more apparent from the autocorrela-
tion in the MCMC draws at different lags. Table 2 presents the autocorrelation
in MCMC draws at lag 1, lag 5, and lag 10. Looking at lag 10, the autocorrela-
tion for the βs is in the range of 0:25� 0:43 in the blocked algorithm, which is
nearly half of 0:55� 0:73, obtained from the non-blocked sampler. Recall that
in our data generation process, we did not make the covariates in sit a subset of
those in xit. Whereas in real-data exercises, it is typical for sit to be a subset.

Table 1. Results from the QBLD Model in the Simulation Study.

Blocked Sampling

25th Quantile 50th Quantile 75th Quantile

Mean Std IF Mean Std IF Mean Std IF

β1 �5.33 0.22 4.55 �5.06 0.18 4.09 �5.08 0.24 4.10

β2 6.16 0.28 4.38 5.96 0.22 3.87 6.16 0.27 4.11

β3 4.34 0.24 3.86 3.88 0.19 3.66 3.88 0.23 3.21

φ2 0.95 0.16 4.68 0.66 0.11 4.60 0.81 0.15 4.93

Non-blocked Sampling

β1 �5.32 0.22 5.94 �5.05 0.20 6.90 �5.07 0.23 6.63

β2 6.15 0.27 6.05 5.95 0.23 6.57 6.15 0.26 6.69

β3 4.35 0.24 5.52 3.88 0.20 5.40 3.88 0.23 5.34

φ2 0.95 0.16 5.58 0.66 0.11 5.26 0.81 0.14 6.15

Note: The first panel presents the results from Algorithm 1 and the second panel presents the results
from Algorithm 2. Mean is posterior mean, Std is posterior standard deviation and IF is inefficiency
factor.
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Therefore, we expect the benefits of the blocked sampler to be even more pro-
nounced in real-data settings.

Finally, Fig. 2 presents the trace plots of the parameters at the 25th quantile
for the blocked algorithm, which graphically demonstrate the appealing sam-
pling. Given the computational efficiency with the blocking procedure, it is our
preferred way for estimating QBLD models and will be used in the subsequent
real data applications.

Table 2. Autocorrelation in MCMC Draws at Lag 1, Lag 5, and Lag 10.

Blocked Sampling

25th Quantile 50th Quantile 75th Quantile

Lag 1 Lag 5 Lag 10 Lag 1 Lag 5 Lag 10 Lag 1 Lag 5 Lag 10

β1 0.86 0.59 0.41 0.85 0.54 0.35 0.88 0.61 0.41

β2 0.89 0.61 0.43 0.87 0.53 0.34 0.89 0.60 0.39

β3 0.86 0.50 0.31 0.83 0.44 0.25 0.84 0.45 0.23

φ2 0.93 0.73 0.54 0.92 0.70 0.51 0.93 0.75 0.58

Non-blocked Sampling

β1 0.96 0.84 0.71 0.97 0.85 0.73 0.97 0.85 0.71

β2 0.96 0.81 0.68 0.96 0.82 0.68 0.96 0.80 0.65

β3 0.95 0.77 0.61 0.95 0.77 0.60 0.94 0.75 0.55

φ2 0.92 0.76 0.63 0.92 0.74 0.59 0.93 0.79 0.68
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Fig. 2. Trace Plots of the MCMC Draws at the 25th Quantile from Algorithm 1.
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3.3. Additional Considerations

In this section, we briefly discuss methods for model comparison and computa-
tion of covariate effects. For model comparison, we follow standard techniques
for longitudinal data models. Specifically, in the application sections, we provide
the log-likelihood, conditional Akaike Information Criterion (AIC), and condi-
tional Bayesian Information Criterion (BIC). The calculations for the condi-
tional AIC and conditional BIC can be found in Greven and Kneib (2010) and
Delattre, Lavielle, and Poursat (2014), respectively. This is a bit unusual for a
Bayesian analysis; however, we want the results in our empirical applications to
align with the classical work on the topics, such as Bartolucci and Farcomeni
(2012). Thus, we follow the approaches so as to allow for better comparisons
and cross-references.

For covariate effects, in general terms, we are interested in the average differ-
ence in the implied probabilities between the case when x1it is set to the value
x†1it and x‡1it. Given the values of the other covariates denoted x�1it; sit and those

of the model parameters θ, one can obtain the probabilities Prðyit ¼ 1|x†1it;
x�1it; sit; θÞ and Prðyit ¼ 1|x‡1it; x�1it; sit; θÞ. Following from Jeliazkov, Graves,
and Kutzbach (2008) and Jeliazkov and Vossmeyer (2018), if one is interested in
the distribution of the difference fPrðyit ¼ 1|x†1itÞ � Prðyit ¼ 1|x‡1itÞg marginalized
over fx�1it; sitg and θ given the data y, a practical procedure is to marginalize
out the covariates using their empirical distribution, while the parameters are
integrated out with respect to their posterior distribution. Formally, the goal is
to obtain a sample of draws from the distribution,

fPrðyit ¼ 1|x†1itÞ � Prðyit ¼ 1|x‡1itÞg
¼ R fPrðyit ¼ 1|x†1it; x�1it; sit; θÞ � Prðyit ¼ 1|x‡1it; x�1it; sit; θÞg
× πðx�1it; sitÞπðθ|yÞdðx�1it; sitÞdθ:

The probabilities are computed from the AL cdf, allowing for straightfor-
ward interpretations of the covariate effects. Also, the procedure handles uncer-
tainty stemming from the sample and estimation strategy. This approach is
demonstrated in each of the following applications.

4. APPLICATIONS
4.1. Female Labor Force Participation

Modeling female labor force participation has been an important area of work
in the economics and econometric literature for decades. The list of work is vast,
but a partial list includes Heckman and MaCurdy (1980, 1982), Mroz (1987),
Hyslop (1999), Arellano and Carrasco (2003), Chib and Jeliazkov (2006),
Kordas (2006), Carro (2007), Bartolucci and Nigro (2010), and Eckstein and
Lifshitz (2011).

Within the literature, several pertinent questions have been analyzed includ-
ing the relationship between participation and age, education, fertility, and
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permanent and transitory incomes. However, serial persistence in the decision to
participate and its two competing theories � heterogeneity and state
dependence � have been of substantive interest. Heterogeneity implies that
females may differ in terms of certain unmeasured variables that affect their
probability of labor force participation. If heterogeneity is not properly con-
trolled, then past decisions may appear significant to current decisions leading to
what is called spurious state dependence. In contrast, pure state dependence
implies that dynamic effects of past participation genuinely affect current
employment decisions. Consideration of heterogeneity and state dependence is
important in modeling female labor force participation and can have economic
implications as discussed in Heckman (1981a, 1981b), and Hsiao (2014,
pp. 261�270). We reexamine the above-mentioned aspects using our proposed
QBLD model. To our knowledge, this is the first attempt to analyze female
labor force participation within a longitudinal quantile framework. So, what can
we learn from a panel quantile approach? Of particular interest are the impacts
of infants and children across the various quantiles. Understanding the differen-
tial effects across the latent utility scale can help shape female labor force poli-
cies, such as maternity leave and child care.

Before proceeding forward, we draw attention to Kordas (2006) who eval-
uated female labor force participation using cross-sectional data and
smoothed binary regression quantiles. His results offer interesting insights
across the quantiles, which further motivate our application and extension to
transitions into and out of the labor force in the panel setting. We also
follow his interpretation where the latent utility differential between working
and not working may be interpreted as a “propensity” or “willingness-to-
participate” (WTP) index.

The data for this study are taken from Bartolucci and Farcomeni (2012),
which were originally extracted from the Panel Study of Income Dynamics
(PSID) conducted by the University of Michigan. The data consist of a sample
of n ¼ 1446 females who were followed for the period 1987 to 1993 with respect
to their employment status and a host of demographic and socioeconomic vari-
ables. The dependent variable in the model is employment status (¼ 1 if the indi-
vidual is employed, ¼ 0 otherwise) and the covariates include age (in 1986),
education (number of years of schooling), child 1�2 (number of children aged
one to two, referred to the previous year), child 3�5, child 6�13, child 14�,
Black (indicator for Black race), income of the husband (in US dollars, referred
to the previous year), and fertility (indicator variable for birth of a child in a cer-
tain year). Lagged employment status is also included as a covariate to examine
state dependence.

Table 3 presents summary statistics for the variables. The presentation of the
table follows from Hyslop (1999), where statistics are broken up into subgroups
of women that have worked zero years, seven years, or transitioned during the
period. As one can see from the table, the average age in the sample is roughly
30; about 40% of the sample are employed throughout the entire period, 10%
are not in the labor force throughout the entire period, 20% transition into or
out of the labor force once, and 30% transition multiple times. Looking closely
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at the different variables for children, there is a decent amount of variation
across the subgroups. For women who are employed zero years, the average
values for child 1�2 and child 3�5 are 0.46 and 0.56, respectively. These num-
bers are more than double compared to that of women who are employed for all

Table 3. Sample Characteristics of the Female Labor Force Participation Data.

Full
Sample

Employed
Seven
Years

Employed
Zero
Years

Single
Transition
from Work

Single
Transition
to Work

Multiple
Transitions

(1) (2) (3) (4) (5) (6)

Age 29.55 30.44 29.18 29.21 29.23 28.68

(4.61) (4.34) (4.51) (4.77) (4.62) (4.73)

Education 13.14 13.33 12.68 13.20 13.01 13.08

(2.06) (1.98) (2.15) (2.13) (2.19) (2.05)

Child 1�2 0.31 0.22 0.46 0.31 0.34 0.38

(0.53) (0.45) (0.60) (0.53) (0.57) (0.57)

Child 3�5 0.37 0.27 0.56 0.32 0.50 0.42

(0.57) (0.49) (0.65) (0.54) (0.65) (0.60)

Child 6�13 0.75 0.71 0.92 0.55 0.99 0.74

(0.92) (0.87) (1.00) (0.81) (1.03) (0.94)

Child 14� 0.32 0.39 0.31 0.29 0.26 0.26

(0.67) (0.72) (0.71) (0.69) (0.61) (0.60)

Black 0.24 0.27 0.26 0.19 0.21 0.22

(0.43) (0.44) (0.44) (0.39) (0.40) (0.41)

Income/10,000 3.04 2.82 3.81 3.43 2.99 2.96

(2.60) (1.82) (5.28) (3.14) (2.04) (1.89)

Fertility 0.07 0.04 0.08 0.10 0.05 0.09

(0.25) (0.21) (0.28) (0.29) (0.22) (0.28)

Years worked

0 10.30 � 100 � � �
1 5.33 � � 20.00 9.03 8.25

2 6.29 � � 7.86 12.26 14.39

3 6.36 � � 12.14 10.97 13.68

4 8.64 � � 11.43 17.42 19.34

5 9.34 � � 13.57 23.23 18.87

6 13.76 � � 35.00 27.10 25.47

7 39.97 100 � � � �

Observations 1446 578 149 140 155 424

Note: The first panel presents the mean/proportion and standard deviations (in parenthesis) of the
variables in the full and subsamples. The second panel displays the column percentages for the num-
ber of years worked and the third panel (i.e., last row) presents the number of observations in the full
and the subsamples.
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the seven years. Further, as children age (child 6�13) more, women have a single
transition to work. While these differences demonstrate some observed heteroge-
neity, unobserved heterogeneity still plays a role, which motivates further analy-
sis. Particularly, a quantile setting will reveal information not available in the
raw observed data by utilizing the latent scale as the WTP index.

The data are modeled following Eqs. (4) and (5) and the model (QBLD) is
specified with a random intercept (i.e., sit only includes a constant). We also esti-
mate the probit model for binary longitudinal data (PBLD) using the algorithm
presented in Koop, Poirier, and Tobias (2007) and Greenberg (2012) and identi-
cal priors for relevant parameters. The results for the QBLD and PBLD models
are presented in Table 4 and are based on data for the years 1988�1993, since
using a lagged dependent variable drops information for the year 1987. The
reported posterior estimates are based on 12,000 MCMC draws after a burn-in
of 3,000 draws and the following priors on the parameters: β∼Nð0k; 10IkÞ and
φ2 ∼ IGð10=2; 9=2Þ. Table 4 presents the posterior means, standard deviations,
and inefficiency factors at the 25th, 50th, and 75th quantiles, and for the binary
probit model. Furthermore, the log-likelihood, conditional AIC (Greven &

Table 4. Results from the Female Labor Force Participation Study.

QBLD

25th Quantile 50th Quantile 75th Quantile PBLD

Mean Std IF Mean Std IF Mean Std IF Mean Std IF

Intercept �3.11 0.21 4.59 �0.31 0.18 4.45 1.35 0.23 4.79 �0.08 0.07 2.79

Age† 0.03 0.01 2.27 0.01 0.01 2.38 �0.01 0.02 2.72 0.01 0.01 1.57

ðAge†Þ2=100 �0.23 0.26 1.96 �0.19 0.25 2.06 �0.13 0.33 2.59 �0.08 0.10 1.45

Education† 0.17 0.03 2.29 0.21 0.03 2.57 0.28 0.05 3.18 0.08 0.01 1.59

Child 1�2 �0.22 0.11 2.68 �0.28 0.11 2.84 �0.38 0.13 2.97 �0.12 0.04 1.67

Child 3�5 �0.55 0.10 2.89 �0.52 0.10 3.22 �0.56 0.12 2.91 �0.21 0.04 1.74

Child 6�13 �0.17 0.07 2.39 �0.18 0.07 2.59 �0.18 0.08 2.95 �0.07 0.02 1.58

Child 14� �0.05 0.10 2.66 �0.02 0.10 2.89 �0.01 0.13 3.22 �0.01 0.04 1.71

Black 0.20 0.15 2.02 0.24 0.15 2.24 0.26 0.19 2.69 0.09 0.06 1.53

Income†=10; 000 �0.13 0.03 3.03 �0.14 0.02 3.00 �0.18 0.03 3.52 �0.05 0.01 1.95

Fertility �1.91 0.20 2.71 �2.06 0.20 2.90 �2.60 0.33 3.85 �0.72 0.07 1.67

Lag Employment 4.89 0.16 3.75 3.88 0.13 4.47 6.71 0.20 5.24 1.49 0.05 3.34

φ2 1.42 0.35 6.36 1.39 0.33 6.16 2.12 0.50 7.12 0.33 0.05 4.97

Log-likelihood �3115.72 �3127.38 �3146.68 �2887.91

AIC 6257.45 6280.77 6319.36 5801.82

BIC 6354.82 6378.14 6416.74 5899.20

Note: †denotes variable minus the sample average. Mean is posterior mean, Std is posterior standard
deviation, and IF is inefficiency factor.
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Kneib, 2010) and conditional BIC (Delattre et al., 2014) are available for each
model.

First, note that across the quantiles the inefficiency factors are low, implying
a nice mixing of the Markov chain. These results, which were demonstrated in
the simulation study, hold in empirical applications as well. Next, if we consider
each quantile as corresponding to a different likelihood, then the 25th quantile
has the lowest conditional AIC and conditional BIC. This result is not surprising
since the unconditional probability of participation is around 70% in the sample.
Our result also finds support in Kordas (2006), where he reports that the 30th
conditional quantile would be the one most efficiently estimable.

The results for the education variable are positive, statistically different from
zero, and show various incremental differences across the quantiles. Education
is found to have stronger effects in the upper part of the latent index, which is
expected since these are women who have a high utility for working and thus
have obtained the requisite education. Regarding the state dependence versus
heterogeneity debate, we find that employment is serially positively correlated,
which is a consequence of state dependence. The effect gets incrementally larger
as one moves up the latent utility scale. While we are controlling for individual
heterogeneity with the random intercept, we still find evidence of state depen-
dence. This result agrees with Bartolucci and Farcomeni (2012), who investigate
the question with a latent class model. Other papers that find empirical evidence
of strong state dependence effects include Heckman (1981a), Hyslop (1999), and
Chib and Jeliazkov (2006).

To further understand the results, covariate effects are computed for several
variables for the three quantiles and the PBLD model. The covariate effect cal-
culations follow from Section 3.3 and the results are displayed in Table 5. Note
that the 50th quantile results are similar to that of the PBLD model, which is to
be expected. The covariate effect for education is calculated on the restricted
sample of individuals with a high school degree (12 years of schooling). The
effect that is computed is four additional years of schooling, implying a college
degree. The effect for income is a discrete change by $10,000, the effect for chil-
dren is increasing the count by one, and for fertility it is a discrete change to the
indicator variable.

Table 5. Covariate Effects in the Female Labor Force Participation Study.

QBLD

25th 50th 75th PBLD

Education 0.0523 0.0711 0.0633 0.0698

Child 1�2 �0.0160 �0.0212 �0.0206 �0.0254

Child 3�5 �0.0415 �0.0397 �0.0302 �0.0430

Child 6�13 �0.0123 �0.0133 �0.0098 �0.0146

Income �0.0095 �0.0102 �0.0097 �0.0105

Fertility �0.1672 �0.1747 �0.1335 �0.1627
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The results show that the birth of a child in that year (fertility) reduces the
probability that a woman works by 16.7 percentage points at the 25th quantile,
17.4 percentage points at the 50th quantile, and 13.3 percentage points at the
75th quantile. For individuals in the lower part of the latent index, having chil-
dren aged one to two impacts their employment decision less than those at the
upper quantiles. Perhaps, women with a low utility for working are less
impacted by infants and toddlers because it is often a desire to stay home with
the child for a few years. Whereas, women with a high utility for working face
negative impacts because of the desire to enter the workforce.

The most pronounced negative effect of children occurs when the child is aged
three to five. Often women temporarily exit the workforce until children are
ready for pre-school and this result provides evidence of the difficulty women
face reentering the workforce after several years of leave of absence (Drange &
Rege, 2013). The finding is interesting from a policy standpoint. If policy is
focused on increasing participation, offering more support in the years when the
child is likely not breastfeeding but before kindergarten would be beneficial.

The covariate effect of a college degree is 5.2 to 7.1 percentage points across
the quantiles, while husband’s income is approximately �1 percentage point
across the quantiles. Thus, a college degree increases the probability a woman
works by about 6 percentage points, whereas an increase in family income only
decreases the probability by 1 percentage point for every $10,000. While many of
these results align with existing findings, the behavior in the high and low quan-
tiles presents useful information, which was otherwise unexplored in panel data.

4.2. Home Ownership

The recent financial crisis had major implications for home ownership in the
United States. Fig. 3 displays the home ownership rates for the United States
from the 1960s to 2017. These data were taken from the FRED website pro-
vided by the Federal Reserve Bank of St. Louis. The rate of home ownership
rose in the late 1990s and early 2000s, but started to decline after 2007. The
determinants of home ownership was reviewed in the 1970s (Carliner, 1974;

Fig. 3. Home Ownership Rates in the United States. Source: Data taken from
FRED, provided by the Federal Reserve Bank of St. Louis.
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Poirier, 1977). However, the recent crisis offers a unique event and shock to
housing markets to reevaluate this topic.

The literature on home ownership has examined racial gaps (Charles &
Hurst, 2002; Turner & Smith, 2009), wealth accumulation and income
(Turner & Luea, 2009), mobility and the labor market (Fairlie, 2013; Ferreira,
Gyourko, & Tracy, 2010), and tax policy (Hilber & Turner, 2014). However,
unlike the labor force context, state dependence has only been lightly examined
with regard to housing tenure.3 Given the large down payments and extensive
mortgage processes typical in home ownership, state dependence is likely to be a
key factor, as well as individual heterogeneity.

Furthermore, quantile analyses in the home ownership literature are lacking.
The quantiles represent degrees of willingness or utility of owning a home.
Owning a home in the United States usually requires an individual to produce a
large upfront investment, a promising credit history, and a willingness to engage
in 30-year mortgages, resulting in less liquidity. Given these requirements, inter-
est lies in how the determinants of home ownership vary across the latent utility
scale. Therefore, this chapter adds to the literature on the probability of home
ownership by employing the QBLD model. The approach has several advan-
tages, namely that we can control for multivariate heterogeneity, visit the state
dependence versus heterogeneity argument in the housing context, and analyze
willingness of home ownership across the quantiles.

The dataset is constructed from the PSID and consists of a balanced panel of
4,092 individuals observed for the years 2001, 2003, 2005, 2007, 2009, 2011, and
2013. The sample is restricted to individuals aged 25�65 who answered the rele-
vant questions for the seven years and captures the period before, during, and
after the Great Recession. The dependent variable is defined as follows:

yit ¼
1 home owner

0 not a home owner;

(
ð9Þ

for i ¼ 1;…; 4092 and t ¼ 2003; 2005; 2007; 2009; 2011; 2013 (2001 is dropped
because it is a dynamic model). The covariates include demographics, marital
status, employment, job industry, health insurance, education, socioeconomic
status, lagged home ownership, and an indicator for after the recession
(2009�2013). The model includes a random intercept and a random slope on an
income-to-needs variable, which allows for individual heterogeneity and hetero-
geneity in income. Heterogeneity in income is an important control because a
marginal increase in income could have a wide range of effects on the probabil-
ity of owning a home, where for some the effect of income could be zero
(perhaps, those who own their home freehold, or those who have no desire for
ownership). Whereas, for others, increases in income could go directly into
home ownership utility. Table 6 presents summary statistics for the variables.
Once again, the presentation of the table follows from Hyslop (1999), where sta-
tistics are broken up into subgroups of people that have always been home own-
ers, never been home owners, or transitioned during the period of interest.
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Table 6. Sample Characteristics of the Home Ownership Data.

Full
Sample

Owned Six
Years

Owned Zero
Years

Single Transition from
Ownership

Single Transition to
Ownership

Multiple
Transitions

(1) (2) (3) (4) (5) (6)

Age of head
(2003)

45.74 48.78 42.31 46.71 38.91 39.62

(13.51) (12.56) (13.82) (15.48) (11.63) (12.29)

No. of children 0.78 0.71 0.82 0.83 0.85 1.00

(1.15) (1.08) (1.25) (1.21) (1.12) (1.27)

Income/10,000 7.71 9.66 3.17 6.54 6.74 6.82

(10.53) (11.18) (3.33) (16.28) (5.71) (10.15)

Inc�Needs Ratio 4.89 6.07 2.17 4.25 4.37 4.23

(7.38) (7.51) (2.30) (14.01) (3.74) (5.66)

Net wealth/10,000 23.05 35.76 1.98 12.40 8.20 10.98

(128.08) (167.12) (16.79) (54.30) (32.70) (45.75)

Female 0.23 0.14 0.49 0.26 0.22 0.24

Married 0.61 0.78 0.23 0.49 0.53 0.48

Single 0.15 0.06 0.42 0.11 0.20 0.17

Below bachelors 0.54 0.52 0.53 0.58 0.57 0.57

Bachelors & above 0.27 0.34 0.11 0.19 0.26 0.22

Job Cat1 0.58 0.61 0.54 0.61 0.53 0.54

Job Cat2 0.11 0.12 0.07 0.10 0.12 0.12

Job Cat3 0.06 0.06 0.03 0.06 0.08 0.07

Health insurance 0.92 0.97 0.83 0.90 0.92 0.87

Race � Black 0.30 0.20 0.58 0.32 0.31 0.35

Race � Others 0.04 0.04 0.06 0.05 0.04 0.05

176
M
O
H
A
M
M
A
D

A
R
SH

A
D

R
A
H
M
A
N

A
N
D

A
N
G
E
L
A

V
O
SSM

E
Y
E
R



Head unemployed 0.06 0.03 0.12 0.07 0.06 0.08

Head NLF 0.23 0.24 0.28 0.29 0.11 0.18

West 0.19 0.19 0.18 0.20 0.19 0.20

South 0.41 0.38 0.44 0.45 0.45 0.48

Northeast 0.14 0.15 0.14 0.10 0.16 0.10

Years owned

0 18.43 � 100 � � �
1 4.28 � � 18.10 14.89 17.34

2 4.57 � � 18.40 14.10 21.39

3 4.11 � � 19.94 14.63 13.87

4 5.50 � � 20.55 23.67 19.94

5 7.16 � � 23.01 32.71 27.46

6 55.96 100 � � � �

Observations 4092 2290 754 326 376 346

Note: The first panel presents the mean and standard deviations (in parenthesis) of the continuous variables and proportions of the categorical variables in the full
and subsamples. The second panel displays the column percentages for the number of years the home is owned and the third panel (i.e., last row) presents the num-
ber of observations in the full and the subsamples. NLF: Not in Labor Force.
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In the sample, about 56% of individuals own a home across the entire sample
period, 18% never own, and the remaining transition at least once. The age of
the head of the household is that in the year 2003. Job industry is classified into
four categories. Job Cat1 is an indicator for jobs in construction, manufacturing,
agriculture, and wholesale. Job Cat2 is an indicator for jobs in business, finance,
and real estate. Job Cat3 is an indicator for jobs in the military and public ser-
vices. The omitted category (Job Cat4) consists of jobs in professional and tech-
nical services, entertainment and arts services, health care, and other. Education
is broken up into categories: less than high school (omitted), high school degree
or some college (below bachelors), and college or advanced degree (bachelors &
above). Race is broken up into white/Asian (omitted), Black, and other. Marital
status is discretized into married, single, and divorced/widowed (omitted).
Region is discretized to west, south, northeast, and midwest (omitted). We have
two income measures, including income-to-needs ratio and net wealth.4 We
employ an inverse hyperbolic sine (IHS) transformation for net wealth because
it adjusts for skewness and retains negative and zero values, which is a common
feature of data on net wealth (Friedline, Masa, & Chowa, 2015).

Table 6 demonstrates some drastic differences across the subgroups. As
expected, the “owned 6 years” group is older and wealthier than the others.
Families that transition tend to have more children, and a higher proportion of
females and singles are in the “owned 0 years” group. These differences in the
raw data motivate our question of interest � with so much state dependence in
home ownership and heterogeneity among individuals and income, what are the
determinants of home ownership through an economic downturn? The results
should provide insights into discrepancies across subgroups of the population
and should better inform policy aiming to assist home owners during downturns.
Standard methods for investigating a binary panel dataset of this sort do not
capture the extensive heterogeneity problem, nor do they offer quantile analyses,
which highlights the usefulness of our approach.

The results for the home ownership application are presented in Table 7.
Posterior means, standard deviations, and inefficiency factors calculated using
the batch-means method are presented for the 25th, 50th, and 75th quantiles, as
well as for the binary longitudinal probit model (PBLD). The results are based
on 12,000 MCMC draws with a burn-in of 3,000 draws. The priors on the para-
meters are: β∼Nð0k; 10IkÞ and φ2 ∼ IGð10=2; 9=2Þ. As in the female labor force
application, the inefficiency factors are low, implying a nice mixing of the
Markov chain.

Many of the results agree with the existing literature. Income, education, and
being married all have a positive effect on home ownership (Hilber & Turner,
2014; Turner & Smith, 2009). While these align with intuition, new insights are
offered across the quantiles for many of the variables. Education, for instance, is
not statistically different from zero at the lower quantile. If one has a low utility
for home ownership, education will not impact that decision. Additionally, age
of the head has a positive impact on home ownership at the lower and median
quantiles. However, for those who have a high utility for home ownership, age
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of the head is not statistically different from zero. Number of children, however,
has a positive impact across the quantiles. Family growth seems to play a role in
owning a home.

The coefficient for female is positive which implies that females relative to
males are more in favor of home ownership. Given that housing was previously

Table 7. Results from the Home Ownership Study.

QBLD

25th Quantile 50th Quantile 75th Quantile PBLD

Mean Std IF Mean Std IF Mean Std IF Mean Std IF

Intercept �15.25 0.85 3.47 �9.26 0.80 4.36 �4.17 0.88 3.47 �4.15 0.31 2.27

Log age of head 1.63 0.21 3.40 0.97 0.20 3.76 0.09 0.23 3.47 0.54 0.08 2.16

No. of children 0.14 0.05 3.46 0.18 0.05 4.32 0.22 0.05 3.65 0.08 0.02 2.13

Inc�Needs ratio 0.48 0.03 8.42 0.45 0.03 8.10 0.55 0.04 6.68 0.23 0.01 6.07

IHS net wealth 0.25 0.03 4.05 0.32 0.03 4.56 0.41 0.04 5.11 0.10 0.01 2.60

Female 0.95 0.14 3.21 0.82 0.14 3.84 0.59 0.18 3.79 0.25 0.05 1.90

Married 2.28 0.14 3.42 2.18 0.15 4.05 1.70 0.17 4.35 0.74 0.05 2.05

Single 0.32 0.15 3.37 0.17 0.15 4.13 �0.27 0.17 3.49 0.01 0.05 1.97

Below bachelors 0.17 0.12 3.71 0.28 0.11 3.80 0.35 0.14 3.89 0.11 0.04 2.02

Bachelors & above 0.28 0.18 3.81 0.37 0.16 4.11 0.51 0.20 4.52 0.13 0.06 2.28

Job Cat1 0.31 0.13 4.23 0.39 0.12 4.34 0.55 0.13 4.07 0.16 0.04 2.20

Job Cat2 0.06 0.20 3.92 0.21 0.19 4.52 0.35 0.21 3.86 0.08 0.07 2.29

Job Cat3 0.03 0.24 3.54 0.08 0.23 3.82 0.11 0.26 3.74 0.01 0.08 2.04

Health insurance 0.46 0.16 3.78 0.46 0.15 3.90 0.23 0.19 4.49 0.09 0.05 2.05

Race � Black �0.40 0.12 3.80 �0.54 0.12 3.55 �0.52 0.14 3.81 �0.18 0.04 1.96

Race � Others �0.15 0.22 3.43 �0.51 0.21 3.80 �0.85 0.25 4.20 �0.19 0.07 1.90

Head unemployed �0.91 0.18 3.83 �0.89 0.19 4.27 �0.76 0.23 5.13 �0.23 0.06 2.14

Head NLF �0.40 0.14 4.03 �0.28 0.14 4.39 �0.06 0.16 4.42 �0.10 0.05 2.32

West �0.46 0.15 3.38 �0.49 0.15 3.78 �0.52 0.18 3.95 �0.16 0.06 1.98

South 0.15 0.13 3.29 0.22 0.13 3.88 0.26 0.14 3.97 0.10 0.05 2.10

Northeast �0.28 0.18 3.44 �0.43 0.17 3.78 �0.59 0.20 3.84 �0.17 0.06 2.15

Post-Recession (PR) �1.32 0.23 6.22 �0.53 0.13 4.28 �0.44 0.11 2.91 �0.09 0.04 2.05

Lag-home own 7.46 0.17 5.93 5.90 0.12 4.25 9.55 0.20 7.04 2.19 0.04 2.15

PR*(lag-home own) 1.47 0.25 5.99 0.72 0.18 4.94 0.76 0.29 8.53 0.11 0.06 2.60

φ2 0.13 0.01 9.88 0.11 0.01 8.67 0.16 0.02 8.94 0.04 0.01 8.71

Log-likelihood �5077.07 �5030.12 �5085.64 �4446.37

AIC 10204.14 10110.24 10221.27 8942.73

BIC 10421.69 10327.79 10438.83 9160.29

Note: Mean is posterior mean, Std is posterior standard deviation, and IF is inefficiency factor. NLF:
Not in Labor Force.
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thought of as a safe investment, this finding aligns with Croson and Gneezy
(2009), who investigate gender differences in preferences and find that women
are more risk averse than men. Furthermore, relative to divorced/widowed indi-
viduals, being single has a positive effect only at the lower quantile.
Interestingly, health insurance has a positive effect at the lower and middle
quantiles and is not statistically different from zero at the higher willingness.
Thus, if one has a high utility for home ownership, potential costs related to
health do not play into the decision to invest in a home. While race � Black is
negative across the quantiles, which is consistent with findings in Charles and
Hurst (2002), race � other is meaningful and negative only at the middle and
upper quantiles. Thus, policy interested in race disparities in home ownership
should focus on high willingness individuals, because low willingness race �
other individuals are not statistically different from whites.

The coefficient for post-Recession (2009�2013) is negative across all of the
quantiles. This finding is expected given the major collapse in housing markets.
The state dependence variable (lag-home own) is very large and positive for all
of the quantiles. Even with a shock to housing markets and heterogeneity in the
intercept and income controlled for, state dependence is a key element of home
ownership. Interestingly, the interaction term between the state dependence vari-
able and the post-recession indicator has a credibility interval that includes zero
for the PBLD model, but is positive across the quantiles. This finding is intrigu-
ing because the positive state dependence effect offsets the negative effect from
the recession. Perhaps individuals who did not own a home prior to the reces-
sion had trouble transitioning to ownership as a result of the tightened lending
and credit channels. This reasoning falls in line with the work of Hilber and
Turner (2014) in that mortgage policies can effect subgroups of home owners,
but not in aggregate. The aggregate finding in PBLD shows the result is not sta-
tistically different from zero, but we find new results at the quantiles.

Covariate effect calculations, which follow from the discussion in Section 3.3,
are computed for several variables in both of the models, QBLD and PBLD.
The results are displayed in Table 8, and show that being a female increases the
probability of home ownership by 2.9 to 1.6 percentage points, for the 25th
and 75th quantiles, respectively. The size of the effect is roughly halved at the
75th quantile. This is useful for understanding the differences in preferences
between males and females, in particular, that at a higher willingness, they are
more similar than at a lower willingness. Similar differing effects are found for
the variable married, where being married increases the probability of home
ownership by 8.7 percentage points at the 25th quantile and 5.4 percentage
points at the 75th quantile. Furthermore, health insurance increases the proba-
bility of home ownership by 1.5 percentage points at a low willingness and 0.06
percentage points at the high willingness (although the basic result at the 75th
quantile was not different from zero).

The aforementioned results find smaller effects at the higher willingness; how-
ever, this is not the case for education and wealth. Wealth and education have a
greater impact for those with a high utility. Increasing net wealth by $50,000
increases the probability of home ownership by 2.0 percentage points, and
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achieving a bachelors degree or more increases the probability by 1.5 percentage
points. Understanding how these effects differ across the quantiles is important
from a policy standpoint. For instance, if policymakers are looking to push
more people into home ownership, they can consider the various types of people
(high utility�low utility), and focus policy on the variables that have a greater
impact on the subgroups. Additionally, when downturns occur, there are diffi-
culties transitioning into or out of housing markets, which is clear from the
results of the interaction term. These results, along with those of the demo-
graphic variables, shed light on findings that are unavailable or different than
those produced from modeling the mean (PBLD).

5. CONCLUSION
This chapter presents quantile regression methods for binary longitudinal data
that accommodate various forms of heterogeneity and designs an estimation
algorithm to fit the model. The framework developed in this chapter contributes
to literatures on quantile regression for discrete data, panel data models for
quantile regression, and discrete panel data models. A simulation study is
performed, which demonstrates the computational efficiency of the estimation
algorithm and blocking approach.

The model is first applied to examine female labor force participation.
Although this is a heavily studied topic, the panel quantile approach offers a
new perspective to understand the impact of the covariates, while controlling for
heterogeneity and state dependence. The results show that particular attention
needs to be paid to women with newborns and children aged three to five as the
impacts of these variables on female labor force participation are large and
dispersed across the quantiles. The model is also applied to investigate the deter-
minants of home ownership before, during, and after the Great Recession. The
state dependence effect in home ownership is strong (even when controlling for

Table 8. Covariate Effects in the Home Ownership Study.

QBLD

25th 50th 75th PBLD

Log age of head 0.0111 0.0076 0.0006 0.0128

IHS net wealth 0.0120 0.0179 0.0203 0.0177

Female 0.0298 0.0289 0.0168 0.0264

Married 0.0879 0.0890 0.0548 0.0916

Bachelors & above 0.0089 0.0132 0.0153 0.0144

Health insurance 0.0159 0.0165 0.0063 0.0098

Race � Black �0.0133 �0.0193 �0.0149 �0.0194

Head unemployed �0.0337 �0.0326 �0.0203 �0.0250

Note: Age is increased by 10 years and the untransformed net wealth is increased by $50,000. The rest
of the variable are indicators.
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multivariate heterogeneity); however, after the Recession, the effect differs
nontrivially from mean regression. Other results, including race, number of chil-
dren, gender, health insurance, and location, also offer unique findings across
the quantiles, which are unavailable in other modeling settings. The approach
provided in this chapter leads to a richer view of how the covariates influence
the outcome variables, which better informs policy on female labor force partici-
pation and home ownership.

NOTES
1. The derivation of the conditional posterior densities are presented in Appendix 2.
2. In the latter scenario, the model zi ∼NðXiβ þ θwi;ΩiÞ can be written as

zi ¼ Xiβ þ θwi þ Liηi, where Li is a lower triangular Cholesky factor of Ωi such that
LiL0

i ¼ Ωi. To be general, let the lower and upper truncation vectors for zi be
ai ¼ ðai1;…; aiTi Þ and bi ¼ ðbi1;…; biTi Þ, respectively. Then the random variable ηit is sam-
pled from TNð0; 1; ðait � x0itβ � θwit �

Pt�1
j¼1 ltjηijÞ=ltt; ðbit � x0itβ � θwit�

Pt�1
j¼1 ltjηijÞ=lttÞ,

where ltj are the elements of Li. This is a recursively characterized truncation region, since
the range of ηit depends on the draw of ηij for j ¼ 1;…; t� 1. The vector zi can be
obtained by substituting the recursively drawn ηi into zi ¼ Xiβ þ θwi þ Lηi. However, the
draws so obtained are not the same as drawing zi from a multivariate normal distribution
truncated to the region ai < zi < bi.

3. J. Chen and Ost (2005) control for state dependence in a study of housing allowance
in Sweden.

4. This measure of net wealth excludes home equity and housing assets, so as to not
conflate with the outcome of interest.
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APPENDIX 1 : NON-BLOCKED SAMPLING IN QBLD
MODEL

The algorithm below presents the sampler for non-blocked sampling in the
QBLD model.

Algorithm 2. (Non-blocked sampling)

• Let Ψi ¼ D2
τ
ffiffiffiffi
wi

p . Sample β|α;φ2; z;w∼Nð~β; ~BÞ, where,

~B
�1 ¼

Xn
i¼1

X 0
iΨ

�1
i Xi þ B�1

0

 !
and

~β ¼ ~B
Xn
i¼1

X 0
iΨ

�1
i ðzi � Siαi � θwiÞ þ B�1

0 β0

 !
:

• Sample αi |β;φ2; z;w∼Nð~a; ~AÞ for i ¼ 1;…; n, where,

~A
�1 ¼ S0

i D
�2
τ
ffiffiffiffi
wi

p Si þ 1
φ2 Il

� 

and ~a ¼ ~A S0

iD
�2
τ
ffiffiffiffi
wi

p ðzi � Xiβ � θwiÞ
� �

:

• Sample wit|β; αi; zit ∼GIG ð0:5; ~λit; ~ηÞ for i ¼ 1;…; n and t ¼ 1;…;Ti, where,

~λit ¼
zit � x0itβ � s0itαi

τ

� 
2

and ~η ¼ θ2

τ2
þ 2

� 

:

• Sample φ2|α∼ IGð~c1=2; ~d1=2Þ, where ~c1 ¼ ðnl þ c1Þ and ~d1 ¼ ðΣiα0iαi þ d1Þ.
• Sample the latent variable z|y; β; α;w for all values of i ¼ 1;…; n and

t ¼ 1;…;Ti from an univariate truncated normal (TN) distribution as follows,

zit|y; β;w∼
TNð�∞; 0� x0itβ þ s0itαi þ θwit; τ2wit

� �
if yit ¼ 0;

TNð0; ∞Þ x0itβ þ s0itαi þ θwit; τ2wit
� �

if yit ¼ 1:

(
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APPENDIX 2 : THE CONDITIONAL DENSITIES FOR
BLOCKED SAMPLING IN QBLD MODEL

This appendix presents a derivation of the conditional posterior densities for
blocked sampling in the QBLD model. Specifically, the parameters β and latent
variable zi are sampled marginally of the random effects parameter αi from an
updated multivariate normal and a truncated multivariate normal distribution,
respectively. The parameter αi is sampled conditional on (β; zi) from an updated
multivariate normal distribution. The latent weights w are sampled element-wise
from a GIG distribution and the variance φ2 is sampled from an updated IG
distribution.

• The mean and variance of the QBLD model, zi ¼ Xiβ þ Siαi þ θwi þDτ
ffiffiffiffi
wi

p ui
for i ¼ 1;…; n, (marginally of αi) can be shown to have the following
expressions,

EðziÞ ¼ Xiβ þ θwi;

V ðziÞ ¼ φ2SiS0
i þD2

τ
ffiffiffiffi
wi

p ¼ Ωi:

First, we derive the conditional posterior of β and zi, marginally of αi, but
conditional on other variables in the model.

� Starting with β, the conditional posterior density πðβ|z;w;φ2Þ can be
derived as,

πðβ|z;w;φ2Þ∝ ∏
n

i¼1
f ðzi |β;wi;φ

2Þ
� 	

πðβÞ

∝ exp �1
2

Xn
i¼1

ðzi �Xiβ� θwiÞ0Ω�1
i ðzi �Xiβ� θwiÞ

(2
4

þðβ� β0Þ0B�1
0 ðβ� β0Þ

	�

∝ exp �1
2

β0
Xn
i¼1

X 0
iΩ

�1
i Xi þB�1

0

 !
β

(2
4

�β0
Xn
i¼1

X 0
iΩ

�1
i ðzi � θwiÞþB�1

0 β0

 !

�
Xn
i¼1

ðzi � θwiÞ0Ω�1
i Xi þ β00B

�1
0

 !)#

∝ exp �1
2

β0 ~B
�1
β� β0 ~B

�1 ~β� ~β
0 ~B

�1
β

n o2
4

3
5;
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where the third line only keeps terms involving β and the fourth line intro-
duces the terms ~β and ~B, which are defined as,

~B
�1 ¼

Xn
i¼1

X 0
iΩ

�1
i Xi þ B�1

0

 !
and ~β ¼ ~B X 0

iΩ
�1
i ðzi � θwiÞ þ B�1

0 β0
� �

:

Adding and subtracting ~β
0 ~B

�1 ~β and absorbing the term

exp � 1
2 �~β

0 ~B
�1 ~βg

n ih
into the proportionality constant, the square can be

completed as follows,

πðβ|z;w;φ2Þ ∝ exp � 1
2
ðβ � ~βÞ0 ~B�1ðβ � ~βÞ


 �
:

The above expression is recognized as the kernel of a Gaussian or normal
distribution and hence β|z;w;φ2 ∼Nð~β; ~BÞ.

� The conditional posterior density of the latent variable z marginally of α
can be obtained from the joint posterior density Eq. (8) as,

πðz|β;w;φ2; yÞ ∝ ∏
n

i¼1
πðzi |β;wi;φ

2; yiÞ
� �

∝ ∏
n

i¼1
∏
Ti

t¼1
½I ðzit > 0ÞI ðyit ¼ 1Þ þ I ðzit ≤ 0ÞI ðyit ¼ 0Þ�

�

× exp


� 1

2
ðzi � Xiβ � θwiÞ0Ω�1

i ðzi � Xiβ � θwiÞ
�	

:

The expression inside the curly braces corresponds to a truncated multivar-
iate normal distribution, so zi |yi; β;wi;φ2 ∼TMVNBi ðXiβ þ θwi;ΩiÞ for all
i ¼ 1;…; n. Here, Bi is the truncation region such that
Bi ¼ ðBi1 ×Bi2 ×…× BiTi Þ, where Bit is the interval ð0;∞Þ if yit ¼ 1 and
the interval ð�∞; 0� if yit ¼ 0 for t ¼ 1;…;Ti. Sampling directly from a
truncated multivariate normal distribution (TMVN) is not possible, hence
we resort to the method proposed in Geweke (1991), which utilizes Gibbs
sampling to make draws from a TMVN.

Let zji denote the values of zi at the j-th pass of the MCMC iteration.
Then sampling is done from a series of conditional posterior distribution
as follows:

zjit|z
j
i1;…; zjiðt�1Þ; z

j
iðtþ1Þ;…; zjiTi

∼TNBit ðμt|�t;Σt|�tÞ; for t ¼ 1;…;Ti;

where TN denotes a truncated normal distribution. The terms μt|�t and Σt|�t

are the conditional mean and variance, respectively, and are defined as,

μt|�t ¼ x0itβ þ θwit þ Σt;�tΣ�1
�t;�tðzji;�t � ðXiβ þ θwiÞ�tÞ;

Σt|�t ¼ Σt;t � Σt;�tΣ�1
�t;�tΣ�t;t;

where zji;�t ¼ ðzji1;…; zjiðt�1Þ; z
j�1
iðtþ1Þ;…; zj�1

iTi
Þ, ðXiβ þ θwiÞ�t is a column vector

with t-th element removed, Σt;t denotes the ðt; tÞ-th element of Ωi, Σt;�t
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denotes the t-th row of Ωi with element in the t-th column removed, and
Σ�t;�t is the Ωi matrix with t-th row and t-th column removed.

• The conditional posterior density of the random effects parameters αi for
i ¼ 1;…; n is derived from the joint posterior density (8) as follows,

πðαi |zi;β;wi;φ2Þ ∝ f ðzi |β;αi;wiÞπðαi |φ2Þ

∝ exp �1
2

ðzi�Xiβ�Siαi�θwiÞ0D�2
τ
ffiffiffiffi
wi

p ðzi�Xiβ�Siαi�θwiÞ
n2

4

þα0iαi
φ2

9=
;
3
5

∝ exp �1
2

α0iðS0
iD

�2
τ
ffiffiffiffi
wi

p Siþφ�2IlÞαi�α0iðS0
iD

�2
τ
ffiffiffiffi
wi

p ðzi�Xiβ�θwiÞÞ
(2

4
�ððzi�Xiβ�θwiÞ0D�2

τ
ffiffiffiffi
wi

p SiÞαi
	�

∝ exp �1
2
ðαi� ~aÞ0 ~A�1ðαi� ~aÞ

2
4

3
5;

where the third line omits all terms not involving αi and the fourth line intro-
duces the terms,

~A
�1 ¼ S0

i D
�2
τ
ffiffiffiffi
wi

p Si þ 1
φ2

Il

� 

and ~a ¼ ~A S0

iD
�2
τ
ffiffiffiffi
wi

p ðzi � Xiβ � θwiÞ
� �

;

as the posterior precision and posterior mean, respectively, and completes the
square. The result is a kernel of a normal distribution, hence, αi |zi; β;wi;φ2 ∼
Nð~a; ~AÞ for i ¼ 1;…; n.

• The conditional posterior density of w is obtained from the joint posterior
density (8) by collecting terms involving w. Each term in w is updated
element-wise as follows:

πðwit|zit; β; αiÞ ∝ ð2πτ2witÞ�1=2exp � 1
2τ2wit

ðzit � x0itβ � s0itαi � θwitÞ2 � wit

2
4

3
5

∝ w�1=2
it exp � 1

2
zit � x0itβ � s0itαi

τ

0
@

1
A

2

w�1
it þ θ2

τ2
þ 2

0
@

1
Awit

8<
:

9=
;

2
4

3
5

∝ w�1=2
it exp � 1

2
~λitw�1

it þ ~ηwit
� �2

4
3
5;
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where the second line omits all terms not involving wit and the third line intro-
duces the terms defined below,

~λit ¼ zit � x0itβ � s0itαi
τ

� 
2

and ~η ¼ θ2

τ2
þ 2

� 

:

The expression in the third line is recognized as the kernel of a GIG distribu-
tion. Hence, we have wit|zit; β; αi ∼GIGð0:5; ~λit; ~ηÞ for t ¼ 1;…;Ti and
i ¼ 1;…; n.

• The conditional posterior density of φ2 is obtained from the joint posterior
density (8) by collecting terms involving φ2 conditional on the remaining
model parameters. This is done below.

πðφ2|αÞ∼⋯ ∝ ð2πÞ�nl=2ðφ2Þ�nl=2exp � 1
2φ2

Xn
i¼1

α0iαi

2
4

3
5ðφ2Þ�ðc1=2þ1Þexp � d1

2φ2

2
4

3
5

∝ ðφ2Þ�ðnl=2þc1=2þ1Þexp � 1
2φ2

Xn
i¼1

α0iαi þ d1

( )2
4

3
5

∝ ðφ2Þð~c1=2þ1Þexp � 1
2φ2

~d1

2
4

3
5;

where ~c1 ¼ nl þ c1 and ~d1 ¼ ðPn
i¼1α

0
iαi þ d1Þ. The expression in the last line is

recognized as the kernel of an IG distribution and consequently, we have

φ2|α∼ IGð~c1=2; ~d1=2Þ∼ IGð~c1=2; ~d1=2Þ.
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